T cell receptor binding kinetics required for T cell activation depend on the density of cognate ligand on the antigen-presenting cell.

نویسندگان

  • Pablo A González
  • Leandro J Carreño
  • Daniel Coombs
  • Jorge E Mora
  • Edith Palmieri
  • Byron Goldstein
  • Stanley G Nathenson
  • Alexis M Kalergis
چکیده

CD8(+) T cells recognize peptides of eight to nine amino acid residues long in the context of MHC class I molecules on the surface of antigen-presenting cells (APCs). This recognition event is highly sensitive, as evidenced by the fact that T cells can be activated by cognate peptide/MHC complex (pMHC) at extremely low densities (1-50 molecules). High sensitivity is particularly valuable for detection of antigens at low density, such as those derived from tumor cells and intracellular pathogens, which can down-modulate cognate pMHCs from the surface of APCs to evade recognition by the adaptive immune system. T cell activation is only triggered in response to interactions between the T cell receptor (TCR) and the pMHC ligand that reach a specific half-life threshold. However, interactions with excessively long half-lives result in impaired T cell activation. Thus, efficient T cell activation by pMHC on the surface of APCs requires an optimal dwell time of TCR-pMHC interaction. Here, we show that, although this is a requirement at low cognate pMHC density on the APC surface, at high epitope density there is no impairment of T cell activation by extended TCR-pMHC dwell times. This observation was predicted by mathematical simulations for T cell activation by pMHC at different densities and supported by experiments performed on APCs selected for varied expression of cognate pMHC. According to these results, effective T cell activation depends on a complex interplay between inherent TCR-pMHC binding kinetics and the epitope density on the APC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Anti-CD3/CD28 Dynabeads and Allogeneic PBMCs on Expansion of Anti-MUC1 Chimeric Receptor T Cells

Background and purpose: In recent years, immunotherapy using chimeric antigen receptor T cells (CAR T cells) has been considered as a novel and promising treatment for some diseases, especially cancer. The CAR T cell production is a multi-step, complex, time-consuming, and costly process. One of the most important steps in production of CAR T cells is expansion of these cells at appropriate num...

متن کامل

Recent Advances in T Cell Signaling in Aging

The immune system of mammalian organisms undergoes alterations that may account for an increased susceptibility to certain infections, autoimmune diseases, or malignancies. Well characterized are age related defect in T cell functions and cell mediated immunity. Although it is well established that the functional properties of T cells decrease with age, its biochemical and molecular nature is...

متن کامل

Engineered Jurkat Cells for Targeting Prostate-Specific Membrane Antigen on Prostate Cancer Cells by Nanobody-Based Chimeric Antigen Receptor

Background: Recently, modification of T cells with chimeric antigen receptor (CAR) has been an attractive approach for adoptive immunotherapy of cancers. Typically, CARs contain a single-chain variable domain fragment (scFv). Most often, scfvs are derived from a monoclonal antibody of murine origin and may be a trigger for host immune system that leads to the T-cell clearance. Nanobody is a spe...

متن کامل

CD2 molecules redistribute to the uropod during T cell scanning: implications for cellular activation and immune surveillance.

Dynamic binding between CD2 and CD58 counter-receptors on opposing cells optimizes immune recognition through stabilization of cell-cell contact and juxtaposition of surface membranes at a distance suitable for T cell receptor-ligand interaction. Digitized time-lapse differential interference contrast and immunofluorescence microscopy on living cells now show that this binding also induces T ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 13  شماره 

صفحات  -

تاریخ انتشار 2005